7 research outputs found

    Enhancing the USDA FAS Crop Forecasting System Using SMAP L3 Soil Moisture Observations

    Get PDF
    One of the U.S. Department of Agriculture-Foreign Agricultural Services (USDA-FAS) mission objectives is to provide current information on global crop supply and demand estimates. Crop growth and development is especially susceptible to the amount of water present in the root-zone portion of the soil profile. Therefore, accurate knowledge of the root-zone soil moisture (RZSM) is an essential for USDA-FAS global crop assessments. This paper focusses on the possibility of enhancing the USDA-FAS's RZSM estimates through the integration of passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission into the USDA-FAS Palmer model. Lag-correlation analysis, which explores the agreement between changes in RZSM and crop status indicated that the satellite-based observations can enhance the model-only estimates

    Examining Rapid Onset Drought Development Using the Thermal Infrared–Based Evaporative Stress Index

    Get PDF
    Reliable indicators of rapid drought onset can help to improve the effectiveness of drought early warning systems. In this study, the evaporative stress index (ESI), which uses remotely sensed thermal infrared imagery to estimate evapotranspiration (ET), is compared to drought classifications in the U.S. Drought Monitor (USDM) and standard precipitation-based drought indicators for several cases of rapid drought development that have occurred across the United States in recent years. Analysis of meteorological time series from the North American Regional Reanalysis indicates that these events are typically characterized by warm air temperature and low cloud cover anomalies, often with high winds and dewpoint depressions that serve to hasten evaporative depletion of soil moisture reserves. Standardized change anomalies depicting the rate at which various multiweek ESI composites changed over different time intervals are computed to more easily identify areas experiencing rapid changes in ET. Overall, the results demonstrate that ESI change anomalies can provide early warning of incipient drought impacts on agricultural systems, as indicated in crop condition reports collected by the National Agricultural Statistics Service. In each case examined, large negative change anomalies indicative of rapidly drying conditions were either coincident with the introduction of drought in the USDM or lead the USDM drought depiction by several weeks, depending on which ESI composite and time-differencing interval was used. Incorporation of the ESI as a data layer used in the construction of the USDM may improve timely depictions of moisture conditions and vegetation stress associated with flash drought events

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    Benefit of Modeling the Observation Error in a Data Assimilation Framework Using Vegetation Information Obtained From Passive Based Microwave Data

    No full text
    A primary operational goal of the United States Department of Agriculture (USDA) is to improve foreign market access for U.S. agricultural products. A large fraction of this crop condition assessment is based on satellite imagery and ground data analysis. The baseline soil moisture estimates that are currently used for this analysis are based on output from the modified Palmer two-layer soil moisture model, updated to assimilate near-real time observations derived from the Soil Moisture Ocean Salinity (SMOS) satellite. The current data assimilation system is based on a 1-D Ensemble Kalman Filter approach, where the observation error is modeled as a function of vegetation density. This allows for offsetting errors in the soil moisture retrievals. The observation error is currently adjusted using Normalized Difference Vegetation Index (NDVI) climatology. In this paper we explore the possibility of utilizing microwave-based vegetation optical depth instead

    Monthly flooded area classification using low resolution SAR imagery in the Sudd wetland from 2007 to 2011

    No full text
    The annual flood cycle of the Sudd wetland in South Sudan plays an important role in the Nile River Basin water balance. The wetland, however, is extensive and sparsely instrumented, which has inhibited credible understanding of regional flooding across space and time. Here we explore the potential to apply low resolution C-band ENVISAT Advanced SAR imagery for remote estimation of Sudd flooded area. Over a five year study period (2007-2011) the time-averaged flooded Sudd area was found to be 18,033 km(2) with an average annual high of 29,702 km(2) in late September and a low of 10,128 km(2) in early May. Annual peak flood area ranges considerably from 19,259 km(2) in 2009 to 36,649 km(2) in 2007, but we found no systematic trend over the five year study period. Derived flood frequency maps identify areas of open water and permanent flooding (12% of total area), seasonal flooding (29%), and intermittent flooding (48%). To evaluate the certainty of our results, we consider their consistency with (1) prior studies, (2) evapotranspiration estimates from the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance algorithm, (3) watershed storage anomaly estimates from GRACE, (4) supervised classification of open water area using Landsat, and (5) a rough measure of water availability (antecedent precipitation). The analyses show reasonable temporal and spatial consistency with available lines of evidence. We conclude that low resolution C-band SAR imagery shows promise for study of Sudd wetland flood dynamics

    Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S.

    No full text
    This paper presents an intercomparative study of 12 operationally produced large-scale datasets describing soil moisture, evapotranspiration (ET), and or vegetation characteristics within agricultural regions of the contiguous United States (CONUS). These datasets have been developed using a variety of techniques, including, hydrologic modeling, satellite-based retrievals, data assimilation, and survey in-field data collection. The objectives are to assess the relative utility of each dataset for monitoring crop yield variability, to quantitatively assess their capacity for predicting end-of-season corn and soybean yields, and to examine the evolution of the yield-index correlations during the growing season. This analysis is unique both with regards to the number and variety of examined yield predictor datasets and the detailed assessment of the water availability timing on the end-of-season crop production during the growing season. Correlation results indicate that over CONUS, at state-level soil moisture and ET indices can provide better information for forecasting corn and soybean yields than vegetation-based indices such as normalized difference vegetation index. The strength of correlation with corn and soybean yields strongly depends on the interannual variability in yield measured at a given location. In this case study, some of the remotely derived datasets examined provide skill comparable to that of in situ field survey-based data further demonstrating the utility of these remote sensing-based approaches for estimating crop yield
    corecore